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The features of thermal processes in a dielectric under the action of a super- 
high-frequency electromagnetic field are studied. It is shown that the non- 
linear heat evolution due to the absorption of electromagnetic energy can result 
at a critical temperature in the development of a nonsteady thermal regime in the 
sample, For bodies of different geometry, the relationship is found between the 
critical temperature and the threshold value of the power of super-high-frequency 
generation and thermophysical properties of the dielectric and conditions of heat 
exchange with the surrounding medium. 

Introduction. The propagation of a super-high-frequency (SHF) ielectromagnetic wave/ 
through a dielectric is related to the absorption of energy and heating of the material. The heating 
is followed by an increase in dielectric losses, which, inturn, results in a larger heat evolution. 
Therefore, the SHF heating becomes nonlinear [i]. Intense heat evolution takes place in the 
continually-contracting central part of the sample. The nonsteady heat regime that develops 
under these conditions is similar to the LS thermal regime with peaking [i]. 

The transition to the thermal regime with peaking should take place when the steady- 
state temperature distribution in the sample becomes impossible, similarly to the combustion 
of gas in the theory of thermal explosion [3] or the case of the thermal breakdown of di- 
electrics [4]. 

The steady-state heat conduction equation for an infinite plane plate with heat sources 
q, which emerge under the action of the electromagnetic field and are distributed continu- 
ously when the heat conduction of the medium is constant, is of the form 

dZT 
k - -  = --q (1)  

dx z 

with the boundary conditions 

k d----~-X lx=+_~ = -T-o~(T--T=). (2 )  

The solution of Eq. (i) that satisfies boundary conditions (2) describes a steady-state 
temperature distribution in the medium. However, if the thermoelectrophysical properties 
of the material are such that starting from a certain temperature Tcr the steady thermal 
distribution becomesimpossible, then this temperature should be considered as a temperature 
of transition to the thermal regime with peaking. Its value can be determined from an analy- 
sis of properties of Eq. (i). 

If the power of heat evolution depends only on the temperature q = q(T), then the 
general integral of Eq. (i) is taken by double quadrature and with account of the boundary 
conditions is of the form 

7"m dT 

2 ~'n q (T) dT 
k 

T 

= ~ (Tra, T~). 
(3) 
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Fig. i. Behavior of the function 
y = f(~)i for an infinite plane 
plate (b = 0, G~ = 0): I) Bi = i; 
2)  5; 3)  ~ .  
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Fig .  2. The dependence, f o r  a 
plane plate, of the values Ycr and 
Gcr on the conditions of heat ex- 
change (b = 0, 8~ = 0): i) Ycr; 2) 8cr. 

D. A. Frank-Kamenetskii has shown that if ~(Tm, Ts) is a monotonic function with respect 
to Tm then the steady-state regime is always possible. However, if the function q(T) is 
such that when Tm varies, ~ passes through the extremum, then this extremum should give 
the critical values rcr and Tcr. For r > rcr and T > Tcr the steady-state temperature 
distribution is impossible. For values of r and T less than critical, each r should cor- 
respond to the two values of Tm, i.e., two different steady-state temperature distributions. 
The stable distribution is the one with the lower value of the maximum temperature. 

Critical temperature for SHF heatin$. The density of heat sources for normal incidence 
of the electromagnetic wave can be calculated, as was shown in [5], from the equation 

q = - -  dS/dx. ( 4 )  

Here S = S0 exp(-2x/hE) is the density of the energy flow; 

z~ ] /2~ 1 V 1 -}- (~d~l) 2'--- 1) (5) 

is the penetration depth of the electromagnetic wave. 

In the SHF range for a number of dielectric materials (quartz and aluminosilicate 
ceramics) e I changes weakly during the heating, and the temperature dependence of g2 can be 
approximated by the exponential function [6] 

e2 = a [b -k exp ([~ (T - -  To))]. ( 6 )  

Here To, a, b, and 8 are the approximation constants. 

For most dielectrics, when the temperature dependence e2 is approximated, the con- 
stant b > i, and the value of the constant component of the coefficient of dielectric losses 
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Fig. 3. Effect of the value of 
the constant component of the co- 
efficient of dielectric losses b 
on the value of the parameters 
Ycr and @cr (@~ = 0, Bi = i): i) 
a plane plate; 2) an infinite 
cylinder; 3) a sphere. 

is small: ab << i. We assume that in the region of the critical temperature the value 
of the coefficient of dielectric losses itself is small, i.e., for T < Tcr r << i. 
The justification of the given assumption is considered below. However, if g2 << I, then 

hE = ~'o 3/-~1/zm2 >> 2r. 

Equation (4) can be written as 

2~ 
q ---- %~ ~ v e l  So%. (T). (7)  

By using Eq. (7), we rewrite Eq. (i) in a dimensionless form, introducing dimensionless 
variables: 0=~(T--T0) and ~l=x/r. Equation (i) assumes the form 

d2~) 

d~l a 
-- --y (b -6 exp O) (8)  

with the boundary conditions 

' d~lOO n=-*t = -T-Bi ( 0 - -  @.). (9"1 

Here ? =(2=Soa~r=)/~ok-I/~-el) is a dimensionless parameter of the volumetric heat evolution; 
Bi = ~r/k is the Blot number. 

If b = 0, then the general integral of Eq. (8) is 

0 = i n  c 
(i0) 
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Here c is an arbitrary constant determined from the boundary conditions. For boundary con- 
ditions (9) we obtain for c a transcendental equation 

�9 2 

(11) 

For the values of y for which (ii) has a solution, a steady-state temperature distribution 
is possible, the form of which is determined by substituting this solution in Eq. (i0). 

For further analysis it is convenient to introduce instead of the constant of integra- 
tion c a new quantity ~, related to it by the relationship c = 2D2/u Then Eq. (ii) can be 
written in the forml 

? = 2exp (--0|  exp - th . ,, (12 )  
1 

The dependence of 7 on the value of D for fixed values of 8~ and Bi is shown in Fig. i. 
The fact that this function has an extremumTcr confirms the existence of the values of 
Y > Ycr for which there are no solutions of Eq. (ii). Therefore, 7cr determines a limiting 
possible steady-state temperature distribution. The:corresponding value of Dcr determines 
the maximum temperature of the limiting steady state Ocr = in (2~cr2/Ycr). 

With the use of Eq. (12), we can analyze the effect of the boundary conditions on the 
value of the critical temperature. Thus, when Bi increases, the heat flow from the surface 
of the sample increases, and, therefore, the transition to the regime with peaking is realized 
at larger values of Ocr and ~cr. In the limit for Bi~ we have @cr = 1.18 and Ycr = 0.87 
( F i g .  2 ) .  

I f  b # O, t h e n  t h e  g e n e r a l  i n t e g r a l  o f  Eq. (8 )  d o e s  n o t  h a v e  an a n a l y t i c a l  e x p r e s s i o n .  
In agreement with (3) it can be written as 

= - - 2 -  ( O m - - O ) + e x p  O m - - e x p  0 

Here 8s is determined from the solution of the transcendental equation 

Bi z 
b (0.~ -- 08) q- exp 0.~ - -  exp O~ -- (0~ -- 0~) 2. 

2? 

By u s i n g  s t a n d a r d  m e t h o d s  o f  n u m e r i c a l  i n t e g r a t i o n  we can  o b t a i n  t h e  d e p e n d e n c e  o f  V on Om 
f o r  t h e  g i v e n  v a l u e s  o f  B i ,  0 ~ ,  and b.  S i m i l a r l y  a s  f o r  b = O, t h e  maximum o f  t h i s  f u n c t i o n  
Ycr determines the limiting possible steady state. The associated value of Ocr is the maximum 
warming-up in the medium before transition to the nonsteady-state regime. 

By varying the value of b over a wide range, we can determine the effect of dielectric 
properties of the medium on the critical temperature (Fig. 3). Each point on the curve 
~cr = f(b) determines the limiting possible steady-state temperature distribution for the 
given boundary conditions. Accordingly, the curve itself (Fig. 3) divides the space of 
parameters (y; b) into the region of the steady-state solution of the heat-conduction equa- 
tion and theregion of transition to the thermal regime with peaking. 

We now find the conditions for the existence of the steady-state temperature distri- 
bution for cylindrical and spherical samples. For these cases the steady-state heat-con- 
duction equation with an exponential function of the source of type (7), written in dimen- 
sionless form, has the form [3]: 

for an infinite cylinder 

a2o q_ 1 dO (15)  
. . . . .  ~ ( b + e x p  0), 
dD z B dR 
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for a sphere 

020 2 dO 
- -  -+ - -  -- - - ?  (b -1- exp @). 

, d~l 2 rl d~l  

Here q = x/r, where r is the radius of the sample. The boundary conditions agree with (9). 

When integrating Eqs. (15) and (16) numerically it is convenient to use auxiliary 
variables: ~=~exp O and v=Om --O- 

Then the differential equations assume the form 

dze + 1 de exp( - -e )  bexp(--@m) (17)  
d@ q~ d~ 

and 

d2e _+_ 2 de exp (--e)  =, b exp (--@~) (18)  
d@ ~ d~ 

for the cylindrical and spherical samples, respectively~ The boundary conditions are 

ded~ .=• = -+ Bi (era--col/_ "7 exp @,,~--e) (19) 

The solution of Eq. (17) or (18) with the boundary conditions (19) allows us to obtain the 
dependence of y on Om for the given Bi, @=, and b. The maximum of this function u just 
as for the plane plate, determines the limiting steady-state temperature distribution for 
a cylinder or sphere. The corresponding value of Ocr is the maximum temperature of this 
state. In Fig. 3, the dependences of ~cr and @cr on the value of b are shown for bodies 
of different geometry. 

From the results of calculations it follows that for all b > 1 the value of the expo- 
nential term in (6) for T < Tcr does not exceed the order of b. -Therefore, in the region 
of critical temperature ~T)~-~2ab<<l, i.e., the assumption taken earlier holds for T ~ Tcr~ 

Based on the results obtained, for calculating Ycr (in a dimensional form, the threshold 
value of the power of the SHF radiation) and the value of the critical temperature @cr, we 
can propose the following empirical dependences (Bi X 5): 

lg ?cr = --(0,25 d- 0,8 lg b -- 0,25n 3/2) • 

x (1- -0 ,181g  Bi), 

O, cr = (1,96 lg b-}- 0,3n 3/2) (1 + 0,04 lgBi) -]-- O= 

or in a dimensional form 

%ok "]/~e~ = exp [--(0,25 + 0,8 lg b - -  0,25na/2) (1 - -  0,18 lg Bi)], Se t  = 2 aa~r a 

1 Ter = ~ -  (1,96 lg b -}- 0,3n a/2) (1 + 0104 lgBi) + T| 

Here n = 0, I, and 2 for a plane plate, a cylinder, and a sphere, respectively. 

Conclusion. It is shown that the nonlinear heat evolution in a dielectric due to 
the absorption of electromagnetic energy can result at a certain temperature in the develop- 
ment of the nonsteady-state heat regime in the sample. 

For dielectric materials, the temperature dependence of the loss factor of which can be 
approximated by an exponential function, a technique for calculating the critical tempera- 
ture and the threshold value of the SHF power is developed. The connection between the 

1479 



critical temperature and the thermophysical properties of the dielectric and the conditions 
of heat exchange with the ambient medium are determined. 

Based on the results obtained the empirical dependences are proposed to estimate the 
value of the critical temperature and the threshold value of the SHF power for the samples 
of different geometry and different conditions of heat exchange. 

The results of calculations can be used in the development of the componentsof different 
SHF devices. 

NOTATION 

T, temperature; x, coordinate; k, coefficient of heat conduction, r, semi-width of the 
plate; ~, coefficient of heat transfer; T=, ambient temperature; Tin, Ts, temperatures in 
the center and on the surface of the sample; 0~, dimensionless ambient temperature; 8m and 8s, 
dimensionless temperatures in the center and on the surface of the sample; So, Poynting vector 
of the incident wave; el, e2, real and imaginary components of the relative dielectric permea- 
bility; %0, wavelength of electromagnetic wave in vacuum. 
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